

DECLARATION of PERFORMANCE No 02/CA-Z/H/0284/2021

- 1. Unique identification code of the product-type: CA-Z/H
- 2. Intended use: Torgue controlled expansion wedge anchor CA-H/X are intended to be used for fastening construction structure to concrete
- 3. Name, registered trade name or registered trade mark and contact address of the manufacturer: Marcopol Sp. z o.o. Producer of Bolts str. Oliwska 100, 80-209 Chwaszczyno Poland
- **4.** System or systems of assessment and verification of constancy of performance of the construction product: **System "1" of assessment**
- 5. European Technical Assessment: ETA 19/0284 issued 21.03.2022

Technical Assessment Body: Instituto de Ciencias de la Construccion Eduardo Torroja

Notified Body: Number: 1219 - Instituto de Ciencias de la Construccion Eduardo Torroja

Certificate of Constancy of Performance: 1219-CPR-0223

6. Declared performance:

	Essential characteristic	Performance	Technical Specification
3.1 BWR	1: Mechanical resistance and stability	,	
3.1.1.	Essential characteristic under static or quasi static loading	see table C3 and C5 below	ETA 19/0284
3.1.2.	Displacements under tension and shear loads	see table C7 and C8 below	ETA 19/0284
3.1.3	Essential characteristic under seismic loading categories C1 and C2	see table C9 and C10 below	ETA 19/0284
3.2 BWR	2: Safety in case of fire		
3.2.1.	Reaction to fire	Anchorages satisfy requirements for class A1	EN 13501-1
3.2.2	Resistance to fire	see table C11 below	ETA 19/0284

<u>Table C3: Essential characteristics under static or quasi-static tension loads</u> <u>according to design method A according to EN 1992-4 for CA-Z/X, CA-H/X, CA-Z/H anchors</u>

	al characteristics unde	Performances							
static to	ension loads according	y to design	method	M8	M10	M12	M16	M20	M24
	n loads: steel failure								
N _{Rk,s}	Characteristic resistance:		[kN]	18.1	31.4	40.4	72.7	116.6	179.2
γMs	Partial safety factor:		[-]	1.5	1.5	1.5	1.5	1.5	1.5
Tension	n loads: pull-out failure	in concret	te				'		
CA-Z/X									
N _{Rk,p,ucr}	Characteristic resistance uncracked concrete:	in C20/25	[kN]	9	16	20	35	50	50
N _{Rk,p,cr}	Characteristic resistance cracked concrete:	in C20/25	[kN]	5	9	12	25	30	30
CA-H/X	anchor				l	l	1		
N _{Rk,p,ucr}	Characteristic resistance uncracked concrete:	in C20/25	[kN]	9	16	30	35	50	
N _{Rk,p,cr}	Characteristic resistance cracked concrete:	in C20/25	[kN]	6	9	16	25	30	
CA-Z/H	anchor								
N _{Rk,p,ucr}	Characteristic resistance uncracked concrete:	in C20/25	[kN]	9	16	25	35	50	
N _{Rk,p,cr}	Characteristic resistance cracked concrete:	in C20/25	[kN]	6	9	16	25	30	
γins	Installation safety factor:		[-]	1.2	1.0	1.0	1.0	1.0	1.2
		C30/37	[-]	1.22	1.16	1.22	1.22	1.16	1.22
Ψc	Increasing factor for No _{Rk,p} :	C40/50	[-]	1.41	1.31	1.41	1.41	1.31	1.41
	IN-Rk,p-	C50/60	[-]	1.55	1.41	1.55	1.55	1.41	1.55
Tension	n loads: concrete cone	and splitti	ng failure		•		•	· ·	
h _{ef}	Effective embedment dep	th:	[mm]	48	60	70	85	100	125
Kucr,N	Factor for uncracked cond	rete:	[-]			1	1.0		
k _{cr.N}	Factor for cracked concre	te:	[-]				7,7		
γins	Installation safety factor:		[-]	1.2	1.0	1.0	1.0	1.0	1.2
S _{cr,N}	Concrete cone failure:		[mm]			3	x h _{ef}	•	
C _{cr,N}	Concrete cone tallule.		[mm]			1.5	x h _{ef}		
S _{cr,sp}	Splitting failure:		[mm]	288	300	350	425/510 ¹⁾	500/600 ¹⁾	560
C _{cr,sp}	Spitting failure.		[mm]	144	150	175	213/255 ¹⁾	250/300 ¹⁾	280

<u>Table C5: Essential characteristics under static or quasi-static shear loads of design method</u> A according to EN 1992-4 for CA-Z/X, CA-H/X, CA-Z/H anchors

	tial characteristics under sta			Performances							
quasi- metho	static shear loads according d A	to design	M8	M10	M12	M16	M20	M24			
Shear	loads: steel failure without le	ever arm									
V _{Rk,s}	Characteristic resistance:	[kN]	11.0	17.4	25.3	47.1	73.1	84.7			
k ₇	Ductility factor:	[-]			1.0	00	•				
γMs	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25	1.25			
Shear	loads: steel failure with leve	r arm					•				
M ⁰ Rk,s	Characteristic bending moment:	[Nm]	22.5	44.8	78.6	199.8	389.4	673.5			
γMs	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25	1.25			
Shear	loads: concrete pryout failur	е									
K8	Pryout factor:	[-]	1	2	2	2	2	2			
γins	Installation safety factor:	[-]		•	1.0	00	•	•			
Shear	loads: concrete edge failure										
lf	Effective length of anchor under shear loads:	[mm]	48	60	70	85	100	125			
d _{nom}	Outside anchor diameter:	[mm]	8	10	12	16	20	24			
γins	Installation safety factor:	[-]			1.0	00					

Table C7: Displacements under tension loads for CA-Z/X, CA-H/X, CA-Z/H, CA-X/X anchors

			Performances							
Displ	acements under tension loads	M8	M10	M12	M16	M20	M24			
CA-Z/	X anchor									
N	Service tension load:	[kN]	2.5	4.3	6.3	10.4	13.9	18.0		
δ_{N0}	Short term displacement:	[mm]	1.1	0.7	1.0	0.4	1.6	0.4		
δ _{N∞}	Long term displacement:	[mm]	1.9	1.9	1.9	1.9	1.9	2.0		
CA-H/	X anchor									
Ν	Service tension load:	[kN]	2.5	4.3	6.3	10.4	13.9			
δ_{N0}	Short term displacement:	[mm]	1.0	1.1	0.9	1.5	1.2			
δ _{N∞}	Long term displacement:	[mm]	1.9	1.9	1.9	1.9	1.9			
CA-Z/	H anchor			•	•	•	•	•		
N	Service tension load:	[kN]	2.5	4.3	7.6	11.9	14.3			
δ_{N0}	Short term displacement:	[mm]	1.0	1.1	0.9	1.5	1.3			
δ_{N^∞}	Long term displacement:	[mm]	1.6	1.6	1.6	1.6	1.6			
CA-X/	X anchor									
N	Service tension load in non cracked concrete:	[kN]	5.7	7.6	8.7	15.3	19.5	-		
δ _{N0}	Short term displacement:	[mm]	1.4	1.4	1.4	1.8	1.8			
δ _{N∞}	Long term displacement:	[mm]	1.9	1.9	1.9	1.9	1.9			
CA-X/	X anchor							•		
N	Service tension load in cracked cocnrete:	[kN]	4.0	6.7	7.5	10.7	13.7			
δ _{N0}	Short term displacement:	[mm]	1.2	1.3	1.3	1.3	1.3	-		
δ _{N∞}	Long term displacement:	[mm]	1.7	1.7	1.7	1.7	1.7			

Table C8: Displacements under shear load for CA-Z/X, CA-H/X, CA-Z/H, CA-X/X anchors

Diant	Displacements under shear loads			Performances							
Dispi				M10	M12	M16	M20	M24			
CA-Z/	X anchor										
V	Service shear load:	[kN]	4.9	6.8	8.5	15.1	24.6	33.6			
δ_{V0}	Short term displacement:	[mm]	1.0	1.5	1.8	1.9	3.1	1.4			
δν∞	Long term displacement:	[mm]	1.5	2.3	2.7	2.9	4.7	2.1			
CA-H/	X anchor						•				
V	Service shear load:	[kN]	4.9	6.8	8.5	15.1	24.6	-			
δνο	Short term displacement:	[mm]	1.0	1.5	1.8	1.9	3.1				
δν∞	Long term displacement:	[mm]	1.5	2.3	2.7	2.9	4.7				
CA-Z/I	H anchor			•		•					
V	Service shear load:	[kN]	4.9	6.8	8.5	15.1	24.6				
δνο	Short term displacement:	[mm]	1.0	1.5	1.8	1.9	3.1				
δν∞	Long term displacement:	[mm]	1.5	2.3	2.7	2.9	4.7				
CA-X/	X anchor			•		•	•				
V	Service shear load:	[kN]	6.8	10.8	15.7	31.4	46.9				
δνο	Short term displacement:	[mm]	1.9	1.6	1.6	2.2	2.2				
δν∞	Long term displacement:	[mm]	2.4	2.4	2.4	3.3	3.3				

Table C9: Essential characteristics for seismic performance category C1 CA-Z/X, CA-Z/H anchors

Essentia	I characteristics for seismic		Performances					
	ance category C1	M8	M10	M12	M16	M20	M24	
Steel fail	ure for tension and shear fail					•		
NRk,s,C1	Characteristic tension steel failure:	[kN]	18.1	31.4	40.4	72.7	116.6	
γMs,N	Partial safety factor:	[-]	1.5	1.5	1.5	1.5	1.5	
$V_{Rk,s,C1}$	Characteristic shear steel failure:	[kN]	7.7	12.2	17.8	33.0	58.5	
γMs,V	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25	
Pull out f	failure							
CA-Z/X an	ichor							
$N_{Rk,p,C1}$	Characteristic pull out failure:	[kN]		5.3	8.4	17.5		
CA-Z/H ar	nchor			•	•		•	•
$N_{Rk,p,C1}$	Characteristic pull out failure:	[kN]	5.9	8.9	16.0	25.0	30.0	
γins	Installation safety factor:	[-]	1.2	1.0	1.0	1.0	1.0	
Concrete	cone failure							
h _{ef}	Effective embedment depth:	[mm]	48	60	70	85	100	
S _{cr,N}	Spacing:	[mm]			3 x h _{ef}			
C _{cr,N}	Edge distance:	[mm]			1.5 X hef			
γins	Installation safety factor:	[-]	1.2	1.0	1.0	1.0	1.0	
Concrete	pryout failure							
K ₈	Pryout factor:	[-]	1	2	2	2	2	
Concrete	e edge failure							
lf	Effective length of anchor:	[mm]	48	60	70	85	100	
dnom	Outside anchor diameter:	[-]	8	10	12	16	20	

Table C10: Essential characteristics for seismic performance category C2 CA-Z/X, CA-Z/H anchors

Essential	Performances							
	nce category C2	M8	M10	M12	M16	M20	M24	
Steel failu	re for tension and shear fail	ure						
N _{Rk,s,C2}	Characteristic tension steel failure:	[kN]	-	31.4	40.4	72.7	116.6	
γMs,N	Partial safety factor:	[-]	-	1.5	1.5	1.5	1.5	
$V_{\text{Rk,s,C2}}$	Characteristic shear steel failure:	[kN]	-	12.2	17.8	33.0	58.5	
γMs,V	Partial safety factor:	[-]		1.25	1.25	1.25	1.25	
Pull out fa								
CA-Z/X and	:hor							
N _{Rk,p,C2}	Characteristic pull out failure:	[kN]			5.2	8.9		
CA-Z/H and	chor							
NRk,p,C2	Characteristic pull out failure:	[kN]	-	3.9	9.1		21.0	
γIns	Installation safety factor:	[-]	-	1.0	1.0	1.0	1.0	
Concrete	cone failure							
her	Effective embedment depth:	[mm]	-	60	70	85	100	
S _{cr,N}	Spacing:	[mm]	-		3:	3 x her		
Ccr,N	Edge distance:	[mm]	-		1.5	x h _{ef}		-
γins	Installation safety factor:	[-]	-	1.0	1.0	1.0	1.0	
Concrete	pryout failure							
kв	Pryout factor:	[-]		2	2	2	2	
Concrete	edge failure							
f	Effective length of anchor:	[mm]		60	70	85	100	
d _{nom}	Outside anchor diameter:	[-]		10	12	16	20	
Displacen	nents			•				
CA-Z/X and	hor							
δ _{N,C2} (DLS)	_ Displacement Damage	[mm]	-		2.34	3.99		
δ _V C2 (DLS)	Limitation State:1)2)	[mm]	-		5.53	5.96		
δn,c2 (ULS)	_ Displacement Ultimate Limit	_[mm]	-		9.54	10.17		
δv,c2 (ULS)	State:1)	[mm]			9.08	10.66		
CA-Z/H and		[1		2.45	C C7		6.82	
δ _{N,C2} (DLS)	_ Displacement Damage Limitation State: 1) 2)	[mm]		3.15 5.61	5.57 5.53		6.82	
δν c2 (DLS)	Displacement Ultimate Limit	[mm]		14.77	20.31		29.12	
δn,c2 (ULS) δv,c2 (ULS)	_ Displacement Ultimate Limit State:1)	[mm]		8.68	9.08		12.32	
OV,C2 (ULS)	outo.	[111111]		0.00	0.00		12.02	

¹⁾ The listed displacements represent mean values

²⁾ A small displacement may be required in the design in the case of displacements sensitive fastening of "rigid" supports. The characteristics resistance associated with such small displacements may be determined by linear interpolation or proportional reduction.

Table C11: Essential characteristics under fire exposure CA-Z/X, CA-H/X, CA-Z/H anchors

F4	-1 -1	C				Performances					
Essenti	al characteristics und	er tire (expos	sure	M8	M10	M12	M16	M20	M24	
Steel fa	ilure										
			R30	[kN]	0,4	0,9	1,7	3,1	4,9	7,1	
NRk,s,f	Characteristic tension	_	R60	[kN]	0,3	0,8	1,3	2,4	3,7	5,3	
INRX,5,1	resistance:		R90	[kN]	0,3	0,6	1,1	2,0	3,2	4,6	
		_	R120	[kN]	0,2	0,5	0,8	1,6	2,5	3,5	
			R30	[kN]	0,4	0,9	1,7	3,1	4,9	7,1	
V	Characteristic shear		R60	[kN]	0,3	0,8	1,3	2,4	3,7	5,3	
V _{Rk,s,fl}	resistance:		R90	[kN]	0,3	0,6	1,1	2,0	3,1 4,9 7 2,4 3,7 5 2,0 3,2 4 1,6 2,5 3 3,1 4,9 7 2,4 3,7 5 2,0 3,2 4 1,6 2,5 3 6,7 13,0 22 5,0 9,7 10 4,3 8,4 14 3,3 6,5 1: 6,3 7,5 7 5,0 6,0 6 12,0 18,0 3 9,6 14,4 25 5/128¹¹ 100/150¹¹ 1 more than one side, the exercise and side and s	4,5	
		_	R120	[kN]	0,2	0,5	0,8	1,6		3,5	
			R30	[Nm]	0,4	1,1	2,6	6,7	13,0	22,5	
B.40	Characteristic bending		R60	[Nm]	0,3	1,0	2,0	5,0	9,7	16,8	
M ⁰ Rk,s,fl	resistance:		R90	[Nm]	0,3	0,7	1,7	4,3	8,4	14,6	
		_	R120	[Nm]	0,2	0,6	1,3	3,3	6,5	11,2	
Pull out	failure										
Nrk,p,fl	Nek,p,n Characteristic resistance:		R30 R60 R90	[kN]	1,3/1,5 ³⁾	2,3	3,0/4,03)	6,3	7,5	7,5	
			R120	[kN]	1,0/1,23)	1,8	2,4/3,23)	5,0	6,0	6,0	
Concret	e cone failure 2)										
N _{Rk,c,fl}	Characteristic resistance	ş-	R30 R60 R90	[kN]	2.9	5,0	7,4	12,0	18,0	31,4	
			R120	[kN]	2,3	4,0	5,9	9,6	14,4	25,2	
Scr.N,fl	Critical spacing:	R30 to l	R120	[mm]			4 x h	lef			
Smin,fl	Minimum spacing:	R30 to l	R120	[mm]	50	60	70	85/128 ¹⁾	100/150 ¹⁾	125	
Ccr.N,fl	Critical edge distance:	R30 to l	R120	[mm]			2 x l	lef			
Cmin,fl	Minimum edge distance:	R30 to	R120	[mm]	c _{min} = 2 x h _{ef} , if fire attack comes from more than one side, the distance of the anchor has to be ≥ 300 mm and ≥ 2 x h _{ef}						
Concret	e pry out failure										
K8	Pryout factor:	R30 to F	R120	[-]	1	2	2	2	2	2	

¹⁾ Respective values for anchors CA-Z/X / CA-H/X, CA-Z/H

7. The performance of the product identified in points 1 and 2 is in conformity with the declared performance in point 6

This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3.

Signed by:

Chwaszczyno, 12.04.2022

R&D Director

Janusz Kabała

Dyrektor Działu Rozwoju

Produktów Lala Wecern Janusz Kapaia

²⁾ As a rule, splitting failure can be neglected since cracked concrete and reinforcement is assumed.
In absence of other national regulations the partial safety factor for resistance under fire exposure γ_{m,6} = 1,0 is recommended.